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SECTION I

INTRODUCTION

The digitalization of flight control systems has been of increasing

interest to the Air Force. One of the problems confronting the designer

is the real-time implementation of advanced control algorithms within

the computational capability of the on-board computer.-' Although digital

computer technology continues to advance significantly, new and expanded

software requirements for such functions as navigation, display and

control manage to keep pace with improvements in computational capa-

bility. As a rule, only a small fraction of the CPU frame time is

allocated for control law computation. Hence, from the standpoint of

implementation, the sampling rate should be sufficiently low in order

to allow time for computation and for the computer to be time-shared.

But lower limits of the sampling rate are determined by factors such as

excessive ratcheting and jittering in the time response, errors due to

measurement noise and sensitivity to plant parameter uncertainty and

disturbances. The codtrol system designer is then faced with the task

of optimizing the performance of the digital control system at a given

rate of sampling.

--In converting a continuous-data (analog) controller into a digital

controller, ad hoc approaches such as bilinear transform and prewarped

Tustin transform techniques have typically been used. These methods

have the advantage of being straightforward and easy to use, and they

are intuitively appealing. But the performance of a system digitalized

by these approaches resembles the performance of the baseline (continu-

ous) system only when the sampling frequency is relatively high,

because the dynamics of the plant and the feedback structure of the

system are not taken into consideration.

Four years ago Rattan and the author of this report presented a

method [1] using a complex-curve fitting technique to synthesize the

digital controller so that the frequency response of the digitalized

system matches that of the original continuous model with a least-square

fit. This method was recently applied to a mathematical model of the



longitudinal flight control of the YF-16 fighter aircraft at an alti-

tude of 30,000 ft. and Mach 0.6. Results [2] better than that of Tustin

transform P pproach have been obtained, especially for lower sampling

frequencies. However, this method does not take the time-domain perfor-

mances into consideration; and only the magnitude plots of the frequency

responses are matched, without regard to the phase plot. Moreover, the

comparison between the frequency response of a continuous system and the

frequency response of a digital control system becomes meaningless (see

Appendix D) as the signal frequency approaches the folding frequency

(one half of the sampling frequency). To compensate for these short-

comings, the state-variable design techniques in the time-domain should

be developed.

In a previous study, the author and his associate showed that [3)

by using z-transformation technique, a digital controller can always be

synthesized so that the output of the digitalized system matches the

output of the continuous model at all sampling instants, under the

stimulation of the same input.

In this study, an attempt is made to match the continuous state

trajectory of the digital control system with that of its analog

(continuous-data) model. Matching.the state trajectories instead of

the output responses assures that the performances of the internal

variables of the plant, as well as the output variable, are preserved

in the digitalization. It should also be emphasized that the matching

is specified over the entire continuous time axis, not just at discrete

sampling instants, and is quantified by a minimum integral squared

error. The choice of this performance criterion is motivated by the

fact that if the state trajectories of two linear dynamical systems

match, then frequency responses of the two systems will also match, as

seen by Laplace-transforming the state equations.

The mathematical tool used in this research is an extended maximum

principle of the Pontryagin type, which enables one to synthesize a
"1staircase" type of optimal control signals, such as the output signal

of a zero-order hold associated with a digital controller. The extended

maximum principle was initiated by Chang [4] and further developed by

2



the author and his co-workers [5-9]. Though not widely used in the

technical literature, it is a very effective tool f or obtaining the

discrete time optimal control policy for an integral performance index,

with a minimum amount of mathematical manipulations. It is shown in

the sequel (Section VI) that the same result can be derived from the

discrete maximum principle and an equivalent discrete-time performance

index but through a far more cumbersome procedure.

This research is a continuation of the effort initiated in the 1981

Summer Faculty Research Program sponsored by the Air Force Office of

Scientific Research through the Southeastern Center for Electrical

Engineering Education, under contract F49620-79-C-0038. In order for

this report to be self contained, the mathematical formulation of the

problem will be repeated (Section II). The optimal strategy and the

digital controller are rederived for the general case (Sections III,

IV). Computational verification and performance evaluations and corn-

parisons are presented in Section V, where computational difficulties

that are special to this method are discussed. Conclusions and recom-

mendations are given in Section VII.
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SECTION II

FORMULATION OF THE DESIGN PROBLEM

Consider a continuous output tracking system (Fig. 1) that has

satisfactory (or ideal) performances. The state and output equations

of the plant are given b'

X(t) = Ax (t) + bu (t) (1)-a -a - m

Ym(t) = cx a (t) + du mCt) (2)

The state and output equations of the controller are given by

c(t) = Acxc (t) + b eM(t) (3)

U(t) = Ccx (t) + d e (t) (4)m C-c c m

where x a(t) and x ct) are n and nc dimensional vectors, respectively,

and u (t), e (t), y (t) and r(t) are scalar functions. The dimensions
m m in

of the coefficient matrices are commensurate with the vectors with

which they associate. The design objective is to replace the control-

ler G (s) by a digital controller D(z) such that the state trajectory
c

of the digitalized system matches that of the continuous model as

closely as possible. The digital control system is represented by

Fig. 2, where G(s) is the same plant as in the continuous model, and

D(z) is to be synthesized in such a way that when r(t) is a unit-step

function, the performance index

3 f {[x(t) - ca(t)PQ[x(t) - xW(t)]
20

+ B[u(t) - um(t0] 2 dt (5)

attains its minimum, where

4



x (t) X a(t)

r (t) e e(t) uM(kt) uYt y(t)
D~) G (s) G (s)
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doinuoa s Zer-odenpat
controller hl

Fig. 2 Thenigutouzs Systemoe

4 t
r (t e t e T) (k ) u(t) (5



o q 2  0

Q -, q>O i0l2..n 0~ (6)

o 0. o.. n

Note that the performance index is an integral, not a discrete sum.

Therefore an attempt is made to match the trajectories over the con-

tinuous time axis, not just at the sampling instants. The state and

output equations of the plant in the digital control system are

;(t) aAx(t) + bu(kT) (7)

y(t) - x(t) + du(kT) (8)

for kT < t 1 (k + 1)T, on account of the zero-order hold used in the

digital control system (Fig. 2).

6



SECTION III

THE OPTIMAL CONTROL SEQUENCE

(A) The Extended Maximum Principle

An extended version of the maximum principle of Pontryagin will

be used to find the optimal control sequence u(kT), k - 0,1,2,--.,

which minimizes the performance index (5). The error sequence e(kT)

can be expressed in terms of u(kT), and the digital controller D(z) can

be determined by

U(z)
D(z) = E(z- (9)

E ((9)

where U(z) is the z-transform of u(kT) and E(z) is the z-transform of

e(kT).

The original Pontryagin's Maximum Principle cannot be applied to

this problem in which the control function must be sampled and held,

i.e.,

u(t) - u(kT) , kT<t<(k+l)T (10)

The derivation of Pontryagin's maximum principle is based on the

assumption that piece-by-piece patchwork of admissible control func-

tions is again admissible. This condition is not satisfied by the

output of a zero-order hold following a constant rate sampler, if the

point of patching is selected at an instant other than the sampling

instants. However, the extended maximum principle may be applied to

the case where the control inputs are outputs of zero-order holds

[5-9]. The following derivation follows from Reference [7]. The

Hamiltonian function H is formed from the adjoint vector P(t), the

state derivative ;(t) and the integrand of the performance index as

H((t),E(t),u(t)) - '(t)-(t)

2 f(x-(t) -a- Xa(t) + 6u(t) - u,(t) 1 2} (2)

7



where the prime denotes transpose. Substituting (7) into (11) gives

H(x(t),p(t),u(t)) -p'(t)Ax(t) + p'bu(t)

1 -2 1 (22 {[x(t) - 1a(t)]'Q[x(t) - -a(t)] + B[u(t) - ur(t)] } (12)

The adjoint vector 2(t) is given by

(t) = - j- (x(t) ,(t),u(t)) (13)ax(t) -

Substituting (12) into (13) gives the adjoint system

(t) = -A'p(t) + Q[x(t) - xa(t0 (14)

The necessary condition for the control and trajectory to be optimum is

that the first variation of the integral of the Hamiltonian is zero,

i.e.,

lum ! f [H(x,E,u+6 u) - H(x,E,u)] dt - 0 (15)

where the variable t in the Hamiltonian has been suppressed, and

6 u(t) - cAu(kT) , kTSt< (k+l)T (16)

where Au(kT) is an arbitrary finite variation of u(kT). Substituting

(12) and (16) into (15) gives

(k+l)Tf [() b - 0(u(kT) - Um(t))lAu(kT) dt - 0 (17)

k-0 kT

Since Au(kT) is an arbitrary constant which may be set independently for

each k, (17) implies

8



(k+1) T

f [E'b - B(u(kT) - u m(t))] dt - 0 (18)
kT

From (18) the optimal control u(kT) is found to be

1 (k+l) T
u(kT) - -L f [p'b + $u (t)] dt (19)TkT

The difficulty in the application of the maximum principle is the two-

point boundary value problem. In this formulation, the two-point

boundary value prob-lem is as follows: For any i, if xi(0) is given,

then pi(0) is unspecified (remains to be determined from (7), (19) and

(14)). If xi(0) is unspecified (remains to be determined by the

maximum principle), then p1 (O) - 0. The same rule applies to xi(-) and

Pi(-).

(B) Determination of the Optimal Control Sequence

In order to compute the optimal control sequence u(kT) from (19),

the solution p(t) of (14) and an explicit expression of u m(t) must be

found first.

Let the augmented state vector of the model be

X (t)
• " [- a (t) 1  (20)

It follows from Appendix A that

m(t) - A x m(t) + b mr(t) (21)

u(t) - cx )+ dmr(t) (22)

where

. -- = . j • • . .... I Innn nnn9



bd c be
A -- -

1+dd l+dd
Am (23)

bdc

CC

b+d-c
b -C(24)

-M b

1+dd

Fd c Z c 1
c (25)

and

d - cd (26)

Define Q m to be the n x(n +n c) matrix obtained by augmenting n c colums

of zeros to Q, i.e.,

QM IQ 0] (27)

Then by definition

Qxc (t) -Q x (t) (28)

Assume that r(t) is a step function, i.e.,

r(t) - 1 Z (29)

It is shown in Appendix B that, for kT < t S (k + 1)T,

10



x(t) - 4(t-kT)x(kT) + 0 (t-kT)bu(kT) (30)

x (t) - - (t-kT)x (kT) + 0 s(c-kT)b a (31)- m m m -in

arnd

(t f(t-kT)p(kT) + F(t-kT)x(kT) + F s(t-kT)bu(kT)

- F (t-kT)x (kT) - F s(t-kT)b a (32)
n -m m -M

where

0(t) e At (33)

t

= f 0(-r) dTr (34)
0

A t
0 mtM - £ m -(35)

t
s (t) - f 0 (T) dT (36)
m 0 m

'Y(t) - e-A't (37)

t
F(t) - f 'Y(t-T)QO(T) dT - '(t) *QO(t) (38)

0

t
F 8(t) - f F(T) dr (39)

0

t
F m(t) - f 'Y(t-T)Q 4' 0 CT) dT % '(t) *Q m 0 (t) (40)

t
F s(t) - fF (Tr) dT (41)

-- -- --- 7 -17 ---- If



Substituting (31) and (32) into (19) and solving for u(kT) yields

uk)-1 .. -Ib"f 8 (T)E(kT) +b'F 5 (T)x(kT)
u~kT) - BT - b'F5 (T)b+-

+ (~c *(T) - b'FS(T)]x (kT)
C m - M -In

+ [OZ *85(T)b + BOd b'F 58 (T)b a (42)
Mm -M - m a

where.

T

IF (T) f T F(t) dt (44)
0

T
F~ (T) =f F5(t) dt (44)

F - T f FP(t) dt (46)
M.

Equation (42) may be used to compute u(kT) iteratively after the two-

point boundary problem is solved. In this research, (9) is used to

synthesize the digital controller transfer function D(z). The two-

point boundary problem still arises and will be treated in the next

section.

12



SECTION IV

THE DIGITAL CONTROLLER

(A) z-Transform of the Optimal Control Sequence

In order to determine U(z) for use in Eq. (9), P(z), X(z) and

X(z) must be determined first. Setting t - (k + 1)T in (30) -(32)

gives

xI(k+1)T] - O(T)x(kT) + S (T)bu(kT) (47)

x~ [(k-i-)T] M 0 (T)x (kT) + (D s(T)b a (48)
-m m -m m -M

p[(k+l)TI - 'Y(T)p~kT) + F(T)x(kT) - F(T)x (kT)

Sm S 49

+ F s(T)bu(kT) - F s(T)b a 49
m -M

Taking z-transformation of (47) - (49) gives, respectively,

X(z) - O(z)[zx(0) + 0s(T)bU(z)] (50)

x (Z) - (Z) Lx (0) + f (T)b (51)

P(Z) - ;Y(Z) [zp(O) + F(T)X(z) - F m (T)X m(z)

+ F s(T)bU(z) - Fs(T)b 2--(52)

*(z)U (z - M Z-T) 1
1(3

* (z) -(zI - O (T)]' (54)

4 'Y(z) - [zI - '(T)V 1  (55)

13



Substituting (50) and (51) into Eq. (52) gives

P(z) - '(z){zp(0) + F(T);(z)zx(0) - F m(T)O (z)zx M(0)

- [F (T); (z)O5(T) + F 8(T)lb '
m M m m -M z-l

+ [F(T)!(z)Os(T) + F (T)]bU(z)) (56)

Substituting (50), (51) and (56) into the z-transform of (42), and

solving for U(z) yields

U(z) - BT - -~~ lb'K(z)zx(0) + b'K (z)ZE(0)

"[OZ 0$(T)$(z) - b K (z)]zx (0)

m m - M SB

" [Oc (Os(T)^0 (z)OS(T) + Oss(T))b m- b'H (z)b + BT ' (57)
m m a m -m -m -mm 1

where

K M(z) - [T'(T)'Y(z)F m(T) + F5 (T)]O^ (z) (58)

K(z) - [T'(T)'Y(z)F(T) + F 5(T)]4(z) (59)

K0 (Z) - T a (T);I(z) (60)

H (Z) = F ss(T)+K (z)F s(T) + K (z)O5 (T) (61)

H(z) - F"(T) + K 0 (z)Fa(T) + K(z)O6 (T) (62)

(B) z-Transform of the Error Sequence

From the block diagram of Fig. 2 and Eqs. (8) and (30) we may

write

41



e(t) - r(t) - y(t) - a - y(t) (63)

y(t) = cO(t-kT)x(kT) + [cWS(t-kT)b + d]u(kT) (64)

for kT < t < (k + L)T. Therefore

e[(k+l)T] - a - c-(T)x(kT) - (Q 5(T)b + dju(kT) (65)

Taking z-transform of the above equation gives

E(z) e()c(T)X(z) - [ (T)b + d]U(z) (66)

+
where e(0+ ) is found from (63) and (8) as

e(O) a-cx(0+) -du(0 +) (67)

Substituting (67) and (50) into (66) gives

E(z) z - du(0e ) - C[I + -(T)(z)]x(0+ )
z-1

1 [C(I + P(T);(z))-s(T)b + d]U(z) (68)

From the definition of O(z) given in (53), it follows that

I + O(T);(z) - z$(z) (69)

Moreover, for most control systems the control signal does not supply

power to the output. Hence d - 0 and E(z) of (68) may be written as

E(z) = - cz$(z)x(0 + ) - C$(z)OS(T)bU(z) (70)
Z-1

By virtue of the relationship given in (9), the z-transfer function of

the digital controller may now be written, provided that the initial

conditions x(0), x m(0) and 2(0) are known.
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(c) The z-Transfer Function of the Digital Controller

In the model-following design, the initial state x (0) of the model--u
may be taken to be zero. But if x(O) is given, the p(O) cannot be

arbitrarily specified. The maximum principle requires that p(O) be such

that Eqs. (7), (14) and (19) yield an optimal control sequence that

drives the system from the given x(O) to a prespecified final state

!(-), or results in E(-) - 0 if the final state is unspecified (free).

Numerical determination of E(O) for given x(-) or p(c) is virtually

impossible for systems requiring a large number of sampling periods to

run, because either matrix A or -A' has eigenvalues in the unstable

region. On the other hand, if x(O) is unspecified, E(0 ) must be set

equal to zero. But then x(O) is determined by Eqs. (7), (14) and (19)

and the final condition, which is either at a given value of x(-) or at

E(-) = 0. Again, numerical determination of x(O) is impractical for

systems requiring a large number of sampling periods to run.

For the system under consideration, the state trajectory of the

continuous model is assumed to start from x m(0) - 0. Let x(O), the

initial state of the plant of the digital control system, be unspeci-

fied. Then p(0) - 0. However, since the minimization of the perfor-

mance index given in (5) means the continuous matching of x(t) with

!!(t) over an infinitely long period of time, it is reasonable to con-
jecture that x(t) starts at the same point as x a(t), or very close to
it, provided that the sampling frequency is considerably higher than the

natural frequency of the control system. Hence the initial condition

may be chosen as

x (0) 0 0 (71)

x(0) 0 (72)

2(O) = 0 (73)

Substituting these conditions into Eqs. (57) and (70), and using the

resulting expressions in the right-hand side of (9), we obtain
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E(z) _4(z)O s(T)bV(z) Vz-- =

+T - b'H(z)b
+ ac[0'(T); (z)O (T) + 0 S(T)]b b' H (z)b + aTd (74)

mm m mm -M M i -M m

It should also be recognized that

c$(z)OS(T)b + d - z-transform of [l Ts G(s)] (75)

For B - 0, the digital controller is obtained from (74) as

1

D(z) = b'H(z)b' -. (76)

b'H (z)b' - c'(z)W (T)b
-m -m

Note that Eq. (19) cannot be used to find u(kT) for 8 = 0. But Eq. (18)

becomes

(k+l) T
f p'b dt = 0 (77)
kT

Since p depends on u(kT), (77) can be used to derive the optimal control

sequence. This approach was taken in the previous project [10] and the

digital controller of (76) was obtained.

(D) The Closed-Loop Transfer Function

Let GhG(z) denote the z-transform of G(s). i.e.,

G.-G(z) - c;(z)O (T)b (78)

Let

G (z) - kb'H(z)b (79)

G zm b'H(z)b
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The z-transfer function of the closed-loop system of Fig. 2 is given by

Y(z) D(z)GhG(z) (80)
R(z) 1 + D(z)Gh G(z)

If the digital controller of (76) is used, D(z) may be written as

G (z)m
D(z) = (81)

1I G (z )G. G(z)
1 h

Substituting (81) into (80) yields

Y~z) bH (z)b

_(z) m z
R(z) = ~0 G (z)GhG(z) bGHGz~b (82)

Thus the optimal model-following design of digital controller can be

achieved by the Guillemin-Truxal approach [11] which selects a digital

controller transfer function algebraically so that the closed-loop z-

transfer function is the product of the z-transfer function of the plant

with a zero-order hold and a correction factor G M(z) given by (79).

It is readily observed from (58) - (62) that

(1) Poles of H(z) are eigenvalues of -A  and eAmT,

(2) Poles of H(z) are eigenvalues of -  and e

Since the poles of Gh G(z) are eigenvalues of AT, what the multiplication

factor G (z) in (82) actually does is, among other things, to replace the

poles of GhG(z) by z-plane poles of the continuous model with samplers

connected to in input and the output. Thus the closed-loop digitalized

system will have poles of the sampled continuous model, which are eigen-

values of eAMT

The stability conditions of the digitalized system is given in [12].

The system is easily stabilized if all diagonal elements of Q are positive.

It is also observed from (82) that if the closed-loop system is stable,

then any zeros of b'H(z)b outside the unit circle must be cancelled by

18



some zeros of b'H (z)b . Theoretically, zeros of b1R(z)bj outside the
m -im

unit circle may be cancelled by some zeros of G h G(z) but such a system is

not realizable.

(E) Controller In the Feedback Path

When the controller is in the feedback path, as in Fig. 3 and Fig. 4,

Formulas (74) and (76) no longer apply and should be rederived. In this

case, the system equations (1) - (4) and (7) - (8) are replaced by

i a(t) - Ax a(t) + be (t) (83)

y m(t) -c xa (t) + d e m (t) (84)

ik ic(t) -A cx (t) +b cy m(t) (85)

v m(t) = c x c(t) + d c y.(t) (86)

and

I (t) -A x(t) + b e(kT) (87)

y(t) - c x(t) + d e(kT) (88)

respectively. The derivation follows a similar pattern as that of (74)

and (76), and will not be repeated here. The result for the case of

B-0 is given as follows:

D -z V(Z)
D() Y(z)

Hl -b (z bJ z-1

F"-'~~ (89)

d +- fE 4 (z)s (T)bt + -]- 1m 1

b PF 5 (T )b - z b H (z ) b z - 1

Again, for d - 0,
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b'[H(z)b - H,(z)b
D (z) - - M (90)

rc# (z), (t)b Ik'H (z)b m

where H(z), H M(z), O(z), and 08 (T) are again given by (62), (61), (53),

and (34), respectively, but A and b are now given by:U -11

bd c -bc

1+dd 1+ ddc
A- (91)

S bc b dc
C A - -C

1+dd c 1 + ddc,

b
1 + dd

c
b (92)

--m bd
C

1 +dd

which are different from their previous definitions of (23) and (24).

It is interesting to see that for the control system of Fig. 4 with

a digital controller given by (90), the closed-loop transfer function is

again given by (82).

Careful examination of (90), in view of (58) - (62), shows that the

digital controller D1 (z) is not realizable, namely, the numerator poly-

nomial of D1 (z) is one degree higher than that of the denominator. To

remedy for this, the digitalized system can be implemented as in Fig. 5,

which can be derived as follows. First, V(z) of Fig. 4 is found to be

V(z) - - ! ( m O (93)
L 1'H()b ]J

In view of (58) - (62), the initial value v(O) is found to be

[ b'F5S(T)b

v(O) - lim V(z- 1 m (94)
z-*L b'F ss (T)b
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Thus, when r(t) is a step function of magnitude a,

V(z) - V(O)z

D2( Y(z)

bF s (T)b b'H(z)bL
-m - -m ___

b1'F (T)bh b.'H?(z-)b -

m -m (95)

The digital controller D 2 (z) of (95) is realizable, on account of (53) -

(55) and (58) - (62).
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SECTION V

COMPUTATIONAL VERIFICATION

Attempts have been made to verify the end results through the

numerical computations of the transfer functions of the digital con-

trollers and the evaluations of the performances for three examples.

For the two lower order systems, excellent time responses of the overall

closed-loop digital control systems and satisfactory frequency responses

were obtained. The other example was the inner loop of the longitudinal

control of YF-16 fighter aircraft at 30,000 ft altitude at Mach 0.6.

Limited by the capability of the available computer programs, the re-

sult for the last example was unsatisfactory, hence not presented. The

computational difficulties and recommendations will be discussed later.

In comparing the frequency responses for the following examples,

the expression

Y Jc*T D( z)G (z) (6- (96)
R(jT 1 + D(z)GhG(z) z1JwT

is used for the frequency response of a digital control system represented

by Fig. 2. It should be noted that, in light of the concept developed

in Appendix D, there does not exist a closed-form expression of the fre-

quency response of a digital control system. It is neither represented

by (96), nor is it represented by

D(JT 1 - -jwTDjc )G(jw)
ELWI JW(97)

R(jw) 1 + D(CJwT)GhG(c wT)

Example 1. The end result given in (74) or (76) is computationally com-

plicated. It will be demonstrated through simple examples first. Refer-

ring to Fig. 1 and Fig. 2, let the plant and the controller be

G(s) - 1 (98)
s +
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and

G (s) - 6+2 (99)
C S

The coefficients in the state variable model are

A= -i] b - El] c - (1] d - 0 (100)

A [o] b c - ] c [2] d M 1 (101)C cc c

We choose Q = 1, -m [1 0] and 8 0 0. The sampling period is chosen

to be relatively large because the system is a slow one. Otherwise,

conversion to digital control would not have been a problem. We shall

consider the cases of T - 0.5 sec., T - 1 sec. and T - 2 sec.

Case 1. T - 0.5 sec.

Implementation of (76) on the computer program gives

D(z) - 1.1017(z - 0.3682)(z+ 0.3078)(z - 0.6065)(z + 4.1231) (102)(z - l)(z + 0.2769)(z - 0.5399)(z + 3.8149)

Since the closed-loop system is stable (integral-squared error with re-

spect to a stable model is minimized) , the pole and zero of (102) out-

side the unit circle should not be implemented. Since the performance

of the digital control system should match its continuous model only at

low frequencies, the controller transfer function of (102) may be approx-

imated by setting z - 1 in the factors (z + 4.1231) and (z + 3.8149).

Thus

D(z) - 1.1722(z - 0.3682)(z + 0.3078)(z - 0.6065) (103)
(z - l)(z + 0.2769)(z - 0.5399)

For the purpose of comparison, the controller Gc(S) is discretized by

prewarped Tustin transformation (substituting s by T z 1 and 2 by

Tx 2 respectively, in Gc(s)):

25 c
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D (z) - .5463(z -0.2934) (104)t z I1

If G C (a) is discretized by impulse invariant transformation, then

D (z) 3z U 1 (105)

Case 2. T -1 sec.

Implementing (76) on the computer program gives

D(z) -l116415(z - 0.3679)(z + 0.3405)(z - 0.1362)(z + 4.3678) (106)(z - 1)z - 0.2384)(z +I 0.2978)(z + 4.0066)

Discounting the pole and zero outside the unit circle by setting z =1

in the corresponding factors gives the stable controller as

D~)-1.248(z - 0.3679)(z + 0..3405)(z - 0.1362)(17D~z) - (z - 1)(z - 0.2384)(z + 0.2979)(17

The prewarped Tustin transformation and impulse invariant transformation

of G C(s) at T -1 are given by, respectively,

D (z) .2.5574(z + 0.218) (108)

D (z) - 3z 1 (109)i z-1

Case 3. T -2 sec.

NOz - 1.2145944(z - 0.1353)(z + 0.2804)(z - 0.0065)(z + 4.44 (110)
(z - 1)z + 0.2701)(z - M.221)(z + 4.6059)

Discounting the unstable pole and zero gives:

D -z 1.2656(z - 1353)(z + 0.2804)(z - 0.0065) (111)D~z,(z -1)(z + 0.2701)(z - 0.0221)
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The prewarped Tustin transformation and impulse invariant transformation

of Gc (a) at T - 2 sec. are, respectively,

D (Z) -1.185(z + 2.687) (112)Vt'' (z -I

Di( z) 3 z -1 (113)

The comparison of unit-step responses of the closed-loop systems

using Di(z), Dt(z) and D(z) are shown in Fig. 6 and Fig. 7. The com-

parison for T - 2 is not plotted because the performances of D (z) and

D (z) are too poor. Fig. 8 compares the time responses of the statei
trajectory matching design at three different sampling frequencies.

Closed-loop frequency responses are shown in Figs. 9, 10 and 11.

Example 2. In this example we use a system that was used in Reference

[1] in order to compare results with the frequency response matching

method for digitalizing the continuous controller. Referring again to

Fig. 1, let the plant and the continuous controller be

G(s) - 10 (114)

'' s(s + 1)

and
S+s

G (s) - 2.4 (115)1 + 7.'-
17.2

respectively. The coefficients in the state-variable model are:

A [ I k (116)

c M El 0] d -(0] (117)

Ac M -7.21 b - (7.21 (118)

c (-21 d c [3] (119)c
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We choose

A=[ ]- (120)

and consider the cases of T -0.05, T -0.15 and T - 0.30. Note that for

T - 0.3, the sampling frequency is only slightly above twice the band-

width of the closed-loop system. For this system, digitalization by

Tustin transformation gives inferior performances both in the time domain

and the frequency domain, and can be found in (151. Hence, comparison

with Tustin method will not be presented. Performance comparisons will

be made with the frequency response matching method of Reference [1].

Case 1. T - 0.05

Implementing (76) on the computer program gives

D(z) = 2.8219(z - 1)(z 0. 9512) (z + 0.2527)(z 0.8869)
(z - 0.9995)(z -0.9533)(z + 0.2682)(z -0.9421)

x(z - 0.9512)(z 1 .0513)(z + 3.5096)(1)
X(z - 0.6742)(z 1 .0514)(z + 3.7310)(1)

Simplifying D(z) by cancelling the poles and zeros that are very close

together and discounting the pole and zero outside the unit circle (by

setting z - 1 in those factors) gives the reduced version of DC:) as

DC:) - 2. 6898(z - 0.9512)(z + 0.2527)(z - 0.8869) (122)
(z - 0.9421)(z + 0.2682)(z - 0. 6742)

Note that the zero at 0. 9512 in D(z) is also a pole of G. G(z), the z-

transform of 1 - C-Ts G(s).h

An attempt has been made to obtain a digital controller via frequency

response matching method of Reference (1] for comparison. But the

method failed to provide a stable digital control system for T - 0.05.

Case 2. T - 0.15

Implementing (76) on the computer program for T -0.15 yields
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2.6577(z + 0.2265)(z - 0.6977)(z - 0.8607)2
D~z = (z -0.2040)(z+0.2771)(z- 0.8607)(z- 0.8090)

(z - !)(z - 1.1618)(z + 3.0744) (123)x (z - 1)(z - 1.1618)(z + 3.7062)

The reduced model of D(z) is

D(z) - 2.294(z + 0.2265)(z - 0.6977)(z - 0.8607) (124)(z + 0.2771)(z - 0.2040)(z - 0.8090)

In applying the frequency response matching method, one can specify the

order of the digital controller desired. The first and second order

digital controller obtained by the frequency response matching method

are [1],

- 3.6787(z - 0.6275) (125)
DflZ) z + 0.3837

and

D(z) W3.96 - 3.65z-1 + 0.56z- 2Of2 -z)-2 (126)
1 + 0.34z - 1 - 0.384z - 2

Results of similation shows that while the frequency domain performance of

the second order controller seems to be slightly better than the first

order controller, ratcheting and jittering begin to appear in the time

response of the system using the second order controller. Hence in

order not to overcrowd the graphs, the second order controller is regarded

as undesirable and not used in the performance comparison, and higher

order controllers by the frequency response matching method are not

sought.

Case 3. T - 0.30

The transfer function of the digital controller (Eq. (76)) is found

to be
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D(z) -2. 0175(z + 0. 1958) (z - 0.4865)(z - 0.7394)
(z + 0.1099)(z + 0.3678)(z - 0.6012)

x(z -0. 7423) (z - 1)(z -l.3499)(z + 2.4504) (127)
(z -O.7414)(z -l.)(z -1.3499)(z +3.5534)

The reduced model of D(z) is

D(z) - 1. 5288(z + 0.1958)(z - 0.4865)(z - 0.7394). (128)
(z + 0. 1099) (z + 0.3678)(z - 0. 6012)

For T = 0.30, the frequency response method fails to produce stable

digital controller again.

The unit-step responses at the output of the state trajectory

matching design, the continuous model and the system obtained by fre-

quency response matching method (first-order controller only) for T

0.15 are compared in Fig. 12. Fig. 13 compares the squared errors of
the time-responses of the state trajectory matching design with the fre-

quency response matching design using the continnous model as the ideal

response. The time responses of the second state variable 5' of the two
designs at T - 0.15 are shown in Fig. 14. The squared errors are shown

in Fig. 15. Comparisons of time domain performances of the state trajec-

tory matching design for different sampling frequencies are made in

Fig. 16 and Fig. 17. The frequency response comparisons are made in

Fig. 18 and Fig. 19.

It should be noted that, although a first glance of Fig. 12 may

give the impression that the frequency matching method and the state-

trajectory matching method both give about the same time-domain per-

formances, Fig. 13 shows that the state-trajectory matching gives a

much better design. Fig. 14 and Fig. 15 show that the state matching

method yields much better step response in the other state variable too.

Although the frequency matching method seems to yield a frequency re-

sponse that matches the frequency response of the continuous model better

at the higher frequency range than that of the state matching design

(Fig. 19), Appendix D suggests that the close matching of frequency re-

sponses between a discrete time system and a continuous system at the
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higher frequency range is not only meaningless, but also undesirable if

the discrete time system is actually a digitally controlled continuous

system.
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SECTION VI

VERIFICATION OF THE OPTIMAL CONTROL SEQUENCE

VIA THE DISCRETE MAXIMUM PRINCIPLE

It has been shown in Section III that the extended maximum prin-

ciple offers an efficient way to derive the optimal control sequence for

a sampled-data system. The extended maximum principle, though powerful

in this and many other applications [5-9] has not been widely used in the

technical community. In many cases where the extended maximum principle

may be used, an equivalent discrete performance index is derived and

the discrete maximum principle is used instead [12-14].

It will be shown in this Section that the optimal control sequence

of Eq. (42) may be derived by using the discrete maximum principle but

a more cumbersome procedure is involved.

The performance index (5) may be written as

li I N-1 (k+l)T
j E f [x' (t)Qx(t) - 2x'(t)Qx (t) + x'(t)Qx (t)

k=O kT aa

+ u 2(t) - 2$u(t)u (t) + Bu2(t)]dt (129)

Since u(t) is the output of a zero-order-hold, substituting (10), (28),

(30) into (129) (except for the term x'(t)Qa(t)) gives:

him 1N-1

N_ - Z {x' (kT)[Q(T)x(kT) + 2M(T)bu(kT)

- 2 -~k)- -- -T-ci (u(T

(k+l)T

- 2u(kT)[b'M m(T)xm(kT) + Om(T)a + f f um(t)dt]
kT

(k+h)T (k+l)T 2

+ f x (t) (__(t) + 8 f u (t)dt} (130)

kT kT m
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where

T(11
Q(T) - f 0'(t)QO(t)dt 11

0

M(T) -f 0I(t)Q0, (tWdt (132)
0

j(T) - T + b' f T s (t)QO'(t)dt (133)
0

T
%m(T) - f 0'(t)QO (t)dt (134)

0

T
M (T) -f V'(t)Qm'ms(t)dt (135)m 0m

i (T) - f 0' (t)Qm'.(t)dt (136)
0

T
Om (T) f ID (ft)Q-(t)dtb (137)

0

The discrete time system to be optimized is described by (47), which is

repeated here for convenience:

x[(k + 1)T] - (T)xEkT) + Os(T)btu(kT) (138)

In the formulation of discrete maximum principle, the Hamiltonian is

given by 1121 (for the sake of notational brevity, the sampling period

T is dropped in the argument of the discrete-time functions):

H(k) - H(2E(k), p(k + 1), u(k))

a j'(k + 1)[§(T) (k) + 8 (T)bLu(k)I

+ x (k) [Q(T)3S(k) + 2M(T)bju(k) - 2Qm(T)x (k)

2M (T)ia + 8 (T) u (k) -u(k)fb'H(TMx W
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+ 0(T)ca + f kT.l) Ur (Ot) + k (k+1)T a (tQX (t)dt

( kT 2 T

+2! f 1~ u 2(t)dt (139)2 kT

The difference equation for the adjoint vector is

p 3k -al(k)

p a) x(k)

- Q(T)xE(k) + M(T)bu(k) - %mxm(k)

M (T)b a + 0'(T)R(k + 1) (140)
m -in

The coupling equation, or the condition of optimality is given by

311(k)

Substituting (139) into (141) gives

p' (k + 1)$ 8(T)h + x' (k)M(T)bt + iO(T)u(k)

(k+1)r
- YM m (T)x m(T) - 8m(T)ci- f u m(t)dtO0 (142)

in **fl inkT

Solving the above equation for u(k) yields the optimal control sequence:

u (k) ;(T Qb'MM(T)% M(k) .11'M' (T)2E(k) + Om (T) a

- O at (T)p2(k + 1) + 8f (klTu m(t)dt] (143)
kT i

If it is recognized that

0-t *P(-T) [*iI(T)f 1  (144)
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then p(k + 1) may be obtained from (140) as

p(k + 1) - (T)[p(k) - Q(T)x(k) - M(T)bu(k)

+ %m(T)x m M + MH (T)b M a] (145)

Also, in view of Eqs. (22), (29) and (31),

(k+)Tf u-- (t)dt - c 0(T)x (k) + 5 0S(T)b a + d aT (146)

kT m mm - mm _M m

Substituting (145) and (146) into (143) and solving for u(k) give the

explicit expression of the optimal control sequence u(k) as

u(k) 1 {-b's'(T)* (T)p(k)
O(T) - b'.' (T)*(T)H(T)b -

+ [-b'M'(T) + b'W s (T)4(T)Q(T)]x(k)

+ (b'lk!(T) + mm (T) i (T)%m(T)1x (k)

+ 10m(T) + Ocm mS(T)b m + BdmT - b'O (T)*(T)Mm (T)b Mh) (147)

It remains to be shown that the right-hand side of (147) is equal to the

right-hand side of (42). First, some preparation is in order. It is

seen that, in view of (132) and (144)

T T
M'(T) - f f *(-X)dXQD(r)dT

0 0

TT

- f f *(x - T)dxQO(T)dT
0 0

T T
f f f *(x - T)QO(T)dTdx (148)
0 x
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Note that a change of variables and a change of order of integrations are

involved in obtaining the last expression in (148). Furthermore, it is

seen from (38) and (39) that

T x
F a(T) -f f js(X - ')QO(T)drdx (149)

0 0

Thus

T T
F (T) + M'(T) - f f *(X - T)Q$(T)d'rdx

0 0

T T
- f 4,(x - T)f *J(T - )OTdx

0 0

T
- f *(-X)F(T)dX
0

M 8 (T)F(T) (150)

Therefore

F a(T) - -M'(T) + 0 * (T)F(T) (151)

Now changing the order of integration in the first expression of M'(T) in

(148), with the aid of (144) and (132), gives

H'(T) -f f *-)dXQO(T)dT

-f f *((-A)Q(T)dTdA

T T
-f *(-)X)Qf f(T)drdX
0X

T T T X
-f *(-X)Q f f(T)dTdA -f *(-X)Q f O(T)d~dA

0 0 0 0
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= Oa (T)QO (T) - f T*(-X)QO8 (X)dX
0

a 0s (T)QOs(T) - M(T) (152)

Substituting (152) into (151) gives

FS(T) -_0S(T)QOs(T) + Oe (T)F(T) + M(T) (153)

But since 1(T) is a matrix exponential, M(T) may be expressed in the

following form, with the aid of the theorem given in Appendix C:

T
M(T) - f 0'(t)QoS(t)dt

0

T t
- *(-T) f (T - t)Q f O(X)dXdt

0 0

T t
- *(-T) f f *(t - ')Qt(T)drdt

0 0

T
- *(-T) f F(t)dt * 0(-T)FS(T) (154)

0

Hence, in view of (144) and (154), FS(T) of (153) may be written as:

F8 (T) - _s' (T)Q4S(T) + 0S'(T)F(T) + 0'(T)F (T) (155)

Integrating both sides of (155) from 0 to T gives

Fas(T) f- s '(t)QOS(t)dt + 48'(T)FS(T) (156)
0

Now it can be shown that the control sequence given in (147) is

identical to that given in (42). With the aid of (133), (154) and (156) the
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denominator in the right-hand side of (147) may be reduced as follows:

O(T) - b'Q(T)(T)M(T)b

O T + b'Cf T 0 (t)Q48"(t)dt - 04 (T)*(T)M(T)Jb
0

O T + b' Cf 0' (t)Q45(t)dt - 0 S (T)F s(T)Jb
0

O T - b'F 55(T)bj (157)

Because O,(T) is a matrix exponential, the coefficient of p(kT) in (147) may

be reduced as follows:

*t (T)*(T) -f T *(-t)dt*(T) -f T*(T - t)dt
0 0

T
f I *(AQ ) s p (T) (158)
0

The coefficient of x(k) may be reduced as follows:

5' -

-M'(T) + 4 (T)O(T)Q(T)

--M'(T) + 0 a (T)*u(T) f 0(-t)QO(t)dt
0

--M'(T) + 0 o (T)F(T) - F'(T) (159)

where (131), (38) and (151) have been used. Similarly the coefficient of

x M(k) in (147) is shown to be

b'M m(T') + Ocm4'(T) - k'*'(T)*(T)%(T)

b'F'(T -k"m(T) (160)
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For the coefficient of a in (147), it is seen that

Sm(T) - .,' s ' (T)*(T)Mm(T)b m

= b'[f '(t)% :(t)dt - *s (T)F 5 (T)Jj
0

-b'F s (T)b (161)

Where formulas (135), (40), (137) and an equivalent of (156) for FS S(T)m

have been used.

Finally, the following relations (which have been found in the deriva-

tions of (154) - (161))

4(T)Q(T) - F(T) (162)

i(T)M(T) - Fs(T) (163)

*(T)m(T) - F(T) (164)

*T)M (T) - FS (T) (165)

lead to the fact that the solution p(k) of (145) is the negative of the

solution of the difference equation given by (49). This fact and Eqs.

(157) - (161) imply that the optimal control sequence given in (147) by

the discrete maximum principle is identical to the optimal control sequence

given in (42) by the extended maximum principle. It is also clear that

the derivation of (42) is much simpler than the derivation of (147). The

extended maximum principle even yields more concise expressions.
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SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

The extended maximum principle has been applied to the problem of

designing a digital controller that drives the state trajectory of a

continuous plant in an output feedback system to follow its continuous

model as closely as possible. Closed form expressions of the optimal

digital controller have been obtained, as given by Equations (74), (76),

(90) and (95). The result has been verified by a derivation via the

widely used discrete maximum principle, which would entail a far more

cumbersome procedure to obtain the same result.

The optimal digital controller gives rise to a closed-loop system

(Fig. 2 or Fig. 4) that has a discrete transfer function equal to

(Eq. (82) repeated here):

b'Hm(z)b m

Y(z) G m z (166)
R(z) b'H(z)b GhGz

if 8 = 0 (integral squared error of the control signal is not weighted in

the performance index). A similar expression may be derived for 8 # 0.
The formulas for the digital controller, given by (74), (76), (90) and

(95), are rather difficult to compute. Numerical computations of these

equations always result in poles and zeros in the unstable region that

should not be implemented. Owing to the amount of computations involved,

it is not clear whether the unstable poles and zeros in the digital con-

troller should be identical to one another and thus be cancelled, or are

introduced by z-transforming the control and error sequences. More study

is needed in this direction.

For the lower order systems (second and third order systems), this

method of digital controller design yields excellent results, even though

the sampling frequencies are relatively low. The digital controllers

designed by the present method compares favorably with those designed by

the frequency matching method, and are far superior to those obtained by

the conventional Tustin or impulse invariant transformations.
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Attempts have also been made to compute the digital controller of

Eq. (95) for a sixth order model of the inner loop of the longitudinal

control of YF-16 fighter aircraft at 30,000 ft altitude and Mach 0.6.

It is found that (95) is not well conditioned for numerical computation

for higher order systems in the sense that it involves ratios of differ-

ences between polynomials which are approximately equal to one another.

This and the fact that a large amount of multiplication and integration

are required in computing H(z) and H (z) make it impossible to obtain a

valid expression of the digital controller by way of the computer programs

available to or developed in this project. Another difficulty involved

in computing (95) is the high order in the resulting transfer function.

The ill-conditionedness of the digital controller formulas may perhaps

be circumvented by transforming the z-plane formulas into the w'-plane, i.e.,

1 + w' T2
Z 2 (167)

2

The w'-plane concept was initiated by Whitbeck [16]. W'-transformation

has the advantage over the w transformation in that when T -' 0, w' + s.

It may also be easier to find reduced-order models of the digital con-

troller in the w'-plane in order for this method to apply to practical

higher order systems.

Equation (166) represent the ideal closed-loop transfer function

when the optimal digital controller is employed. It represents the best

closed-loop digital control system that can be achieved if the digital

system is required to model after the continuous system.

The numerical computation of the optimal digital controller transfer

function of Eqs. (74), (76), (90) and (95) involves integrations and

double integrations of matrix exponentials and of convolutions of matrix

exponentials. We used Romberg's algorithm [171 on an IBM 370 computer

with extended precision. For a sixth order system, the CPU time required

to compute a set of coefficients for (76) is 0.25646 hours for T - 0.04,

and 0.74129 hours for T - 0.1. Therefore, a more efficient computer program
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1 at
such as one that performs analytic integration by giving I a as the

at a
integration of e for matrix functions needs to be developed. The

analytic integration program would not only cut down the CPU time, but

also improves precision since numerical values are substituted at the last

stage. It is useful not only for computing the formulas of the digital

controller developed in this project, but also in discretizing a contin-

uous control system or in applying the discrete maximum principle to

sampled-data systems.
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APPENDIX A

THE OVERALL STATE EQUATIONS OF THE CONTINUOUS MODEL

The feedback structure in Fig. 1 gives

Eliminating e m(t) and y m(t) among Eqs. (A-i), (2) and (4) and solving

for u m(t) gives

-dc c xCt d
u (t) c-- x (t) + c x()+-cr(t) (A-2)
m l+dd -a 1+dd -c 1+dd

c c C

Eliminating u M(t) and y M(t) among Eqs. (A-i), (2) and (4) and solving

for e MtM gives

e(t) x~ (t) + -~ c 2C(t) +-yr (t) (A-3)
m 1+dd~ a l+ddc- 1d

Substituting (A-2) into (1) and (A-3) into (3) yields, respectively,

bdc bc bd
k (t (A~ xa(t) + - x (t -c~t A4
-a k +dd -a +dd -ct)+dd-~) A4

-b c . b c b

k(C - (t)+ -A bCd x (t) + b.~ r(t) (A-5)
QA1dd2a~)+ c -T d c -C Cd
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APPENDIX B

SOLUTIONS OF THE STATE AND ADJOINT EQUATIONS

The solution 2(t) of Eq. (14), in terms of x(t) and x a(t), is

given by

t

P(t) = 4i(t-kT)P2(kT) + f lp(t-r)Q[X(T) -X (T)]dT (B-i)
kTa

for kT < t < kT, where

ip(t-kT) e AtT (B-2)

With the aid of Eq. (28), Eq. (B-i) can be written as

t

.2(t) - *p(t-kT)p(kT) + f 4i(t-T)QK(T)dT
kT

t

-f *~(t-T)Qxm(T)dT (B-3)
kT

The vectors x m(t) and x(t) are solutions of Eq. (21) and Eq. (7),

respectively. They are given by, for kT < t < (k+1)T,

x Mt - * (t-kT)x (kT) + $ 8(t-kT)b a (B-4)
mi m -m in -M

xi(t) - 0 (t-kT)xE(kT) + (b s(t-kT)bju (kT) (B-5)

where

A (t-kT)
t (t-kT) - e£ (B-6)

t t-kT
0nkT(t-kT) - f OMrdr-f $(T)dr (B-7)

kT 0

0(t-kT) - cA(t-kT) (B-8)
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0 a (t-kT) t f (t-T)dT -k (T)dT (B-9)
kT 0

Now substituting (B-4) and (B-5) into (B-3) and invoking (B-7) and

(B-9) gives, for kT < t < (k+l)T,

t
P(t) = 4(t-kT)2(kT) + f Vj(t-r)Q(T-kT)dTX(kT)

kT

t
+ f j(t-T)Q f 0(tr-X)d)LdTbu(kT)

kT kT

t
-f 4(t-T)MO m(T-kT)dTX m(kT)
KT

t T
-f *~(t-T)QM f 0(-)dXdTb ma(-0
kT kT a (-)

In view of the identities derived in Appendix C, a new set of notations

may be used for the integrals which appear in the above equation, for

the sake of clarity:

p(t) = (t-kT)p(kT) + F(t-kT)2i(kT) + Fs(t-kT)b!u(kT)

-F (t-kT)x Wk) - F S (t-kT)b a (B-1l)
-m m --m

where

t
F(t-kT) -f ,(t-')QO(T-kT)dT

kT

t-kT
-f 4D(t-kT-T)QO(T)dT (B-12)
0
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F 8(t-kT) -f *(t-r)Q f4TAdd
kT kT

t-kT T

-f f *(T-X)QO(Xd~dT
0 0

t-kT
-f F('r)dT (B-13)

0

t

F m(t-kT) =f *i(t-)QO$(T-kT)dT
kT

t-kT

0 f V(t-kT-T)M m(T)dT 
(B-14)

tT

F s(t-kT) f 4(t-T)Q. f I TXdd
mkT kT

t-kT T

-f f 4(-)$XdL~
0 0

t-kT
-f F m(T)dT (B-15)
0
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AP PEN C

FORMULAS OF FINITE MULTIPLE INTEGRALS

THEOREM: The convolution between f(t) and the area under g(t), if it

exists, is equal to the area under the convolution between f(t) and

g (t).

T T T t
f f(T-T) f g(X)dXdT f f f(t-T)g(T)dTdt (C-1)
0 0 0 0

Proof.

A T ~

Fig. C-1. Area of integration in (t,x) plane.

In view of Fig. C-i, interchanging the order of integration for the

integral in the right-hand side of Eq. (C-I) gives

T t T T
f f f(t-r)g(r)drdt -f f f(t-T)g(T)dtdT (C-2)
O 00
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Substituting t' for t-r and dt' for dt (regarding T as a constant in the

partial integration with respect to t) in Eq. (C-2), we obtain, after

changing the integration limits accordingly,

T T T T-T
f f f(t-r)g(-r)dtdx - f f f(t')dt'g(T)dr (C-3)

0 T 0 0

In a similar fashion, interchanging the order of integration in the

left-hand side of Eq. (C-i) gives

T T T T
f' f(T-r) f g(X)dXdT - f f f(T-'r)g(X)drdAi (C-4)
0 00X

Substituting t for T-'r and dt for -dT and changing the integration limits

accordingly in the right-hand side of Eq. (C-4) gives

T T T 0
f f f(T-T)g(X)dTdX -f f (-l)f(t)dtg(X)dX (C-5)
o X 0 T-X

Comparison of the Eq. (C-3) with Eq. (C-5) completes the proof.

The following is a list of formulas that are used in the deriva-

tions in Appendix B. The proof involves changes of variables or

changes of order of integrations, and is hence omitted.

t t-kT
Formula 1. ff(t-T)dr f f(Tr)dT

kT 0

t t-kT
Formula 2. f f(t-T)g(T-kT)dT I f(t-kT-T)g('r)dT

kT 0

t t-kT T

Formula 3. 1 f(t-r) f g(T-X)d~dT - f f(t-kT-T) f SgX)d~dT
kT t kT T0 t-TT0

Formula 4. f f(t-T) f g(T-)A)d)~dr - f f f( -X)g(X)dXdl
kT kT 0 0

Formula 5. f (klTftf(t-T)g(T-kT)drdt -f Tf tf(t-T)g~i)drdt
kT kT 0 0
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t t

Formula 6. f f(t-'r)f g(T-A)d~dT -f f(t.-T)f g(A)dAdT
0 0 0 0

t Tt 'r
Formula 7. f f(t-T)f g(X)dXdTr - f f f(T-A)g(AX)d~dT

o 0 0 0

Formula 8. ~-~ g(r-X)dXdT - f f f(r-X)g(X)dXdr
0 0 0 0

Formula 9. f (klTf tf(t-T) fg g('-X)d~dTdt
kT kT kT

T t
-f f f(t-r)f g(,X)dXdrdt
0 0 0

Formula 10. f (klTf tf(t-r) f g(T-X)d~dTdt
kT kT kT

f I f f(T-AL)g(A)dld~dt
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APPENDIX D

SUBALIASES IN THE FREQUENCY RESPONSE

OF DIGITALLY CONTROLLED SOURCES
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SUBALIASES IN THE FREQUENCY RESPONSE

OF DIGITALLY CONTROLLED SYSTEMS

Hsi-Han Yeh*
University of Kentucky, Lexington, Ky.

and
Richard F. Whitbeck**

Systems Technology, Inc., Hawthorne, Calif.

I. INTRODUCTION

In a recent paper, Whitbeck, Didaleusky and Hofmann [1] extended

the concept of the tradiational "sampled spectrum" frequency response

for discretely excited continuous systems. When a sinusoidal wave is

input to a discretely excited continuous system, N sine waves at dif-

ferent alias frequencies are required to match the continuous steady-

state time response at the sampling instants and at N-i equally spaced

intersample points. In the special case of N-i, this reduces to the

traditional concept of the sampled-spectrum frequency response for

sampled-data systems. Letting N approach infinity gives an infinite

spectrum for the continuous steady-state response of a discretely

excited continuous system. This theory enables one to write an exact

expression of the time response sampled at any rate that is ar integer

multiple of the sampling rate of the system. The practical value of

knowing such an expression of the output is evident.

*Associate Professor, Department of Electrical Engineering

"Principal Research Engineer
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Howver, in the derivation of Whitbeck, Didaleusky and Hofmann

[11, only positive aliases of the input frequency are included in the

representation of the sampled continuous output. Whereas the result is

correct for the case where N is finite, the limit case where N

approaches infinity is in error and it contains only half of the

spectral components necessary for an asymptotic representation of the

continuous output. In this paper, a new derivation which includes

subaliases in the spectral representation of the sampled output will be

presented. It will be shown that, as the output sampling rate N

approaches infinity, the infinite spectrum of the continuous output

contains all aliases and subaliases of the input frequency. Also pre-

sented will be a direct derivation of the infinite spectrum of the

continuous output, without invoking the expression of the sampled

steady-state response. This confirms the correct representation of the

continuous steady-state output of discretely excited continuous systems

in response to a single sinusoidal input. This derivation brings forth

a unified concept of frequency response which enables one to write the

spectral representation of the output of a discretely excited continuous

system on the basis of the frequency response of the continuous system.

II. FREQUENCY COMPONENTS IN THE SAMPLED OUTPUT

Consider the system of Fig. 1 where G(s) represents an arbitrary

transfer function and H(s) represents an arbitrary data hold. Let the

input be a unit amplitude exponential cjbt and the output be sampled

with period T/N. Using multirate sampling results (See Appendix of

(11) yields
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cT/N .[GTT/N"- (GM)TIN T

(GM)T/N N NjbT (z A sT/) (1)

z -C

where the notation follows Whitbeck, Didaleusky and Hofmann [1]. The

superscript denotes the period of sampling operation. In the time

domain, a sampled function [r(t)]T or rT is defined by

T A Ca)
[r(t)] M I r(n)S(t-nT) - r(t) i6 (t-nT) (2)

nw- nw=-a

In the s-domain, a sampled function RT is defined by

T A -nsT 1 2(
RT(s) L r(n)c - - R(s+=) (3)

n-0 nm-T

and in z-domain,

RT(z) RT(s) sT  (4)

But in the presence of a higher rate sampler with period T/N, as in

this paper, it is desirable to use z-E sT/N and

R (zN) RT(s)j sT/N z  
(5)

Hence it is simpler to think of frequency response of discretely excited

continuous systems in terms of s rather than z. Where no confusion may

arise, the variables s and z may be omitted to give versatility to the

notation. For the sake of notational brevity, in the following devel-

opment G(s)M(s) will be written as GM(s), for occasions where a needs to

be substituted by a string of notations.
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The steady-state component in the sampled output is of interest.

In taking the partial fraction expansion of the right-hand side of (1),

N Tone may note that the N principal roots of z -c j b T are

bT bT-2nr bT+2it bT-47r

Hence the partial fraction expansion of CT/N (z) may be written asz

1 cT/N(z) - n 2  An +JBnz n TiNn=nl Z - n

+ [terms due to modes of (GM)T/N ]  (6)

where
2n

n n1= -l) nl -N"

if N-odd if N- even

1 I Nn2 I(N-) ) n2  2-

and

A +JB (GM) T/N z N-1 [-1 T/N
n n dZ N jbT N T

-• , jwnT/N JZn /n

1 T(GM(s)) TIn (7)
SJn

The steady-state response to e j b t can be written by inspection of (6) as

[c 8(t) ]T/N (A +JBn) (8)
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Since the system of Fig. 1 is linear the response to the imaginary part

of C is the imaginary part of the response to eibt Hence the

steady-state response to sinbt is

[st]T/N n 2  ]T/N

[C S T/N I(An sin wnt + B coswnt) (9)
Sn-nj I

where An and Bn are determined by (7). Note the simplicity of the

derivation as compared to that of Reference [1]. The difference between

(9) and the corresponding expression (Eq. (11) of Reference (l1) is

that, in the right-hand side of (9), the N spectral components are

selected alternately between negative (subalias) and positive aliases,

while only positive aliases are used in Eq. (11) of Reference [i]. It

is worth noting that while both results are correct for the representa-

tion of sampled steady-state output, difficulty arises (and was over-

looked) in considering the limit case of N- in Eq. (11) of Reference

(1]. By letting N-.-a in (9), this difficulty is circumvented. The

following development demonstrates this point. The correct expression

resulting from taking N-+- in (9) is presented first.

Letting N- in (9) gives

css(t) - (An sin n t + Bn cosWnt) (10)
n n

where, on account of (7),

A +B - T T/NAn + n  T n-ow (Na

lim GM(s +j 2--) (11)
N-' k-n
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2 longas N and N only the k-0 term contributes to

the infinite sum in the right-hand side of (11) since GM(s) is always

a low-pass filter. Hence, as N -,

A + JB - -IGM(jw) (12)
n n T n

However, the above limit case is not true if n-N-i, for finite integer

i. In that case,

An + - lim GM(s -j T

N n k- -N k=-
S"Jn

-1 2r (n-kN)M T lira I GM[j(b + T
N-1-o k=-

1 0lim I GM(j(b - 2i) T T (13)
TN-.- k=co

Now as N-)--, only the k-i term contributes to the infinite sum in the

right-hand side of (13) since GM(s) is always a low-pass filter. Thus

for n-N-i, N-'-, finite i,

A + jB - 1O2Jib (14)
n n TT

which is a subalias component, is not negligible, and is not represented

by (12). Since the summation in Eq. (11) of Reference [l] runs between

n-0 and n-N-i, letting N- results in an An+JB n which cannot be

represented by (12), which is Eq. (18) of Reference [1].

A numerical example demonstrating the representation of the

spectral components of the continuous output and the sampled output on

a Bode-plot and an even-scaled frequency response plot, respectively,
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has been given in Reference [1]. The modification and correction made

in this paper requires the inclusion of subaliases or negative aliases

on the frequency response plots in accordance with (8) and (10). To

avoid duplication, numerical examples will not be given here. The

reader is urged to apply this modification to the example given in

Reference [1].

III. DIRECT DERIVATION OF THE FREQUENCY SPECTRUM OF THE CONTINUOUS

OUTPUT

In the above development, the continuous output is treated as a

limit case of sampled output with an arbitrarily large sampling fre-

quency, and the infinite frequency spectrum of the continuous output is

given by (10) with the spectral components A +JB given by (12). In
n n

this section, it will be shown that the frequency spectrum of the con-

tinuous output of a discretely excited continuous system can also be

derived directly without invoking the sampled output. Thus it confirms

the result of the previous section.

Again consider the system of Fig. 1, where

T
C(s) - G(s)M(s)R (s) (15)

Let

gm(t) 4 L-I[G(s)M(s)] (16)

Let the input be ejbt with t extending from -- to m. Then the steady-

state response of the system may be written as

css(t) [cJbt] T, m(t) (17)
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where the * denotes convolution, and

21rn

[jbt T = jbt 1 6t-nT) l"jbt 2 (18)

The last identity can be found in textbooks on Fourier series and

Fourier transform [2]. Fourier transformation of (18) gives

F 6(.-b---) (19)

Fourier transform of (17) is

cc 2Trn

C r 6(w- b T )G(j)M(j) (20)
ss T

since gin(t) is a causal function. Now the steady-state output is

obtained by inverse transforming (20):

22n
c (t) I 1 MJ~ 27rn I b+E T (21)

ss T T Mjb--)

Since w b+ F, substituting (12) into (21) gives

css(t) I (An+ JBn ) n (22)

as the steady-state response to cibt. Note that (22) is the limit case

of (8) when N-)-. Again, by virtue of the linearity of the system,

(22) implies that the steady-state response to sin bt is given by (10),

with An+JBn given by (12). In summary, the analogy between the fre-

quency response of a continuous system and that of a discretely excited

continuous system is readily demonstrated by comparing Fig. 2 and Fig. 3.
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Note especially that if all the variables are represented in the

s-domain, a unified concept of frequency response may be readily applied

to both continuously excited and discretely excited continuous systems.

IV. CLOSED-LOOP DIGITAL CONTROL SYSTEMS

It is readily seen that if, in Fig. 2,

F(s) = GM[l + GT(G2GM)T]GT (23)

then Fig. 2 represents the closed-loop system of Fig. 4. Since

wn -b+ 2T- and the Laplace transform of a sampled function is periodic
2i

in s with period j-, substituting sjwn into F(s) gives

F(Jw) = GM(jw n ) { + G1(G 2GM)T]G} f(24)

The concept of frequency response set forth in Fig. 2 implies that, for

the continuous output of the closed-loop system of Fig. 4,

A + jB 1 GM(Jn){[ + GT(G 2GM)T)GiJ (25)
n n T n121 sj

For the sampled output with sampling period T/N, the spectral components

are given by substituting the right-hand side of (23) for GM in (7).

Thus

n n GI s.jN n

Applying multirate sampling theory (Appendix of (1]) and property of

periodicity to (26) gives
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A+ jB = (GMTNJ + GT(G 2GM)T G1 (27)
SJ n

Thus the spectral representation of a closed-loop discretely excited

continuous system is readily obtained via the unified concept of fre-

quency response.

V. CONCLUSIONS

This paper corrects the mistake made in a previous paper and

further advances the concept of frequency response of discretely excited

continuous systems. If a continuous system has transfer function F(s)

and its input is R(s), then its steady-state response to r(t)=cjbt is

c ss(t)=F(jb)Ejbt (Fig. 3). If R(s) is sampled and then input into F(s),

then the input to the continuous system F(s) is (Fig. 2)

RT(s) M T R(s+ j=-T (28)

and the steady-state response of the discretely excited system to

r(t)- jb t is

2 Trn
c~(t) =

2 7rn T~4-~.c F[J(b + 2 en b (29)Css~t T T ](9

The analogy between the frequency response of a continuous system and

that of a discretely excited continuous system is interesting in the

sense that it enables one to write the frequency response of the latter

on the basis of what is already known about the former. This unified

concept of frequency response is independent of system configurations,

as F(s) may represent closed-loop as well as open-loop systems.
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Fig. I Discretely Excited Continuous System
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(s) RT(s)- -70 R(S+j~r1)C(s

T

If r Mt=e~b Then C5 5(t M {TO F j(

Fig. 2 Frequency Response of Discretely Excited Continuous
System

I f r (t ejb t T he n C s5 ( t)UF b)ib t

Fig. 3 Frequency Response of Continuous System
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Fig. 4 A Closed-Loop Digital Control System
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